Texas Differential Equations Conference 2018

Date: March 24, 2018
Location:Downtown UTSA Campus, Durango Building
Time: 1:30 PM - 2:30 PM


Seminar Series: Real Hilbert Spaces and Laplace’s equation February 10, 2017 Seminars

Dr. Giles Auchmuty

Professor of Mathematics

University of Houston

This talk will describe the use of elementary Hilbert space methods to prove results about solutions of boundary value problems for Laplace’s equation. Results about the subspaces of real harmonic functions as subspaces of the Hilbert spaces L2(Ω) and Hm(Ω) will be described. Boundary value problems for Laplace’s equation may be viewed as studying the linear mapping of some space of allowable boundary data to these Hilbert spaces.

Under natural conditions on the boundary, these are compact linear transformations that have a singular value decomposition (SVD). This SVD will be described in terms of Steklov eigen values and eigen functions and their use for efficient approximations of solutions of different boundary value problems will be illustrated. These representations of the solutions are related to applications such as pipe flow and electrostatic fields.

Click here for more information!