Blowup with vorticity control for a 2D model of the Boussinesq equations

We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.

Vu Hoang

Visiting Assistant Professor
(210) 458-8107

FLN 4.01.44

View Bio